Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; : 101951, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729241

RESUMO

OBJECTIVE: Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS: Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS: Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS: These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.

2.
J Pharmacol Exp Ther ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702195

RESUMO

The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and non-pharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. Significance Statement Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. In this review, we provide insight into how manipulation of PFC circuits could address this unmet need of more efficacious and safer pain therapeutics.

3.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38453466

RESUMO

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Dor Crônica , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Masculino , Dor Crônica/metabolismo , Córtex Insular , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Neurônios/metabolismo , Alcoolismo/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo
4.
Neurobiol Pain ; 13: 100121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864928

RESUMO

The medial prefrontal cortex (mPFC) consists of a heterogeneous population of neurons that respond to painful stimuli, and our understanding of how different pain models alter these specific mPFC cell types remains incomplete. A distinct subpopulation of mPFC neurons express prodynorphin (Pdyn+), the endogenous peptide agonist for kappa opioid receptors (KORs). Here, we used whole cell patch clamp for studying excitability changes to Pdyn expressing neurons in the prelimbic region of the mPFC (PLPdyn+ neurons) in mouse models of surgical and neuropathic pain. Our recordings revealed that PLPdyn+ neurons consist of both pyramidal and inhibitory cell types. We find that the plantar incision model (PIM) of surgical pain increases intrinsic excitability only in pyramidal PLPdyn+ neurons one day after incision. Following recovery from incision, excitability of pyramidal PLPdyn+ neurons did not differ between male PIM and sham mice, but was decreased in PIM female mice. Moreover, the excitability of inhibitory PLPdyn+ neurons was increased in male PIM mice, but was with no difference between female sham and PIM mice. In the spared nerve injury model (SNI), pyramidal PLPdyn+ neurons were hyperexcitable at both 3 days and 14 days after SNI. However, inhibitory PLPdyn+ neurons were hypoexcitable at 3 days but hyperexcitable at 14 days after SNI. Our findings suggest different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities and are regulated by surgical pain in a sex-specific manner. Our study provides information on a specific neuronal population that is affected by surgical and neuropathic pain.

5.
J Comp Neurol ; 530(13): 2286-2303, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579999

RESUMO

The central nucleus of the amygdala (CeA) network consists of a heterogeneous population of inhibitory GABAergic neurons distributed across distinct subregions. While the specific roles for molecularly defined CeA neurons have been extensively studied, our understanding of functional heterogeneity within classes of molecularly distinct CeA neurons remains incomplete. In addition, manipulation of genetically defined CeA neurons has produced inconsistent behavioral results potentially due to broad targeting across CeA subregions. Therefore, elucidating heterogeneity within molecularly defined neurons in subdivisions of the CeA is pivotal for gaining a complete understanding of how CeA circuits function. Here, we used a multifaceted approach involving transgenic reporter mice, brain slice electrophysiology, and neuronal morphology to dissect the heterogeneity of corticotropin-releasing hormone (CRH) neurons in topographically distinct subregions of the CeA. Our results revealed that intrinsic and morphological properties of CRH-expressing (CRH+) neurons in the lateral (CeL) and medial (CeM) subdivisions of the CeA were significantly different. We found that CeL-CRH+ neurons are relatively homogeneous in morphology and firing profile. Conversely, CeM-CRH+ neurons displayed heterogeneous electrophysiological and morphological phenotypes. Overall, these results show phenotypic differences between CRH+ neurons in CeL and CeM.


Assuntos
Núcleo Central da Amígdala , Hormônio Liberador da Corticotropina , Animais , Núcleo Central da Amígdala/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
6.
Neuropharmacology ; 203: 108885, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798130

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide spectrum of biological processes including apoptosis, immune response and inflammation. Here, we sought to understand how S1P signaling affects neuronal excitability in the central amygdala (CeA), which is a brain region associated with fear learning, aversive memory, and the affective dimension of pain. Because the G-protein coupled S1P receptor 1 (S1PR1) has been shown to be the primary mediator of S1P signaling, we utilized S1PR1 agonist SEW2871 and S1PR1 antagonist NIBR to determine a potential role of S1PR1 in altering the cellular physiology of neurons in the lateral division of the CeA (CeL) that share the neuronal lineage marker somatostatin (Sst). CeL-Sst neurons play a critical role in expression of conditioned fear and pain modulation. Here we used transgenic breeding strategies to identify fluorescently labeled CeL-Sst neurons for electrophysiological recordings. Using principal component analysis, we identified two primary subtypes of Sst neurons within the CeL in both male and female mice. We denoted the two types regular-firing (type A) and late-firing (type B) CeL-Sst neurons. In response to SEW2871 application, Type A neurons exhibited increased input resistance, while type B neurons displayed a depolarized resting membrane potential and voltage threshold, increased current threshold, and decreased voltage height. NIBR application had no effect on CeL Sst neurons, indicating the absence of tonic S1P-induced S1PR1. Our findings reveal subtypes of Sst neurons within the CeL that are uniquely affected by S1PR1 activation, which may have implications for how S1P alters supraspinal circuits.


Assuntos
Núcleo Central da Amígdala/metabolismo , Potenciais da Membrana/fisiologia , Oxidiazóis/farmacologia , Somatostatina/biossíntese , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Tiofenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Expressão Gênica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Somatostatina/genética , Receptores de Esfingosina-1-Fosfato/agonistas
7.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724184

RESUMO

Despite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.


The far-reaching opioid crisis extends to babies born to mothers who take prescription or illicit opioids during pregnancy. Opioids such as oxycodone and methadone can freely cross the placenta from mother to baby. With the rising misuse of and addiction to opioids, the number of babies born physically dependent on opioids has risen sharply over the last decade. Although these infants are only passively exposed to opioids in the womb, they can still experience withdrawal symptoms at birth. This withdrawal is characterized by irritability, excessive crying, body shakes, problems with feeding, fevers and diarrhea. While considerable attention has been given to treating opioid withdrawal in newborn babies, little is known about how these children develop in their first years of life. This is, in part, because it is difficult for researchers to separate drug-related effects from other factors in a child's home environment that can also disrupt their development. In addition, the biological mechanisms underpinning opioid-related impairments to infant development also remain unclear. Animal models have been used to study the effects of opioid exposure during pregnancy (termed prenatal exposure) on infants. These models, however, could be improved to better replicate the typical pattern of opioid use among pregnant women. Recognizing this gap, Grecco et al. have developed a mouse model of prenatal methadone exposure where female mice that were previously dependent on oxycodone were treated with methadone throughout their pregnancy. Methadone is an opioid drug commonly prescribed for treating opioid use disorder in pregnant women and was found to accumulate at high levels in the fetal brain of mice, which fell quickly after birth. The offspring also experienced withdrawal symptoms. Grecco et al. then examined the physical, behavioral and brain development of mice born to opioid-treated mothers. These included assessments of the animals' motor skills, sensory reflexes and behavior in their first four weeks of life. Additional experiments tested the properties of nerve cells in the brain to examine cell-level changes. The assessments showed that methadone exposure in the womb impaired the physical growth of offspring and this persisted into 'adolescence'. Prenatal methadone exposure also delayed progress towards key developmental milestones and led to hyperactivity in three-week-old mice. Moreover, Grecco et al. found that these mice had reduced neuron density and cell-to-cell connectivity in the part of the brain which controls movement. These findings shed light on the potential consequences of prenatal methadone exposure on physical, behavioral and brain development in infants. This model could also be used to study new potential treatments or intervention strategies for offspring exposed to opioids during pregnancy.


Assuntos
Metadona/efeitos adversos , Neurônios Motores/metabolismo , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Complicações na Gravidez/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Metadona/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Tratamento de Substituição de Opiáceos/métodos , Gravidez
8.
Mol Brain ; 13(1): 100, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600466

RESUMO

Cellular and synaptic mechanisms underlying how chronic pain induces maladaptive alterations to local circuits in the medial prefrontal cortex (mPFC), while emerging, remain unresolved. Consistent evidence shows that chronic pain attenuates activity in the prelimbic (PL) cortex, a mPFC subregion. This reduced activity is thought to be driven by increased inhibitory tone within PL circuits. Enhanced input from the basolateral amygdala (BLA) to inhibitory neurons in PL cortex is one well-received mechanism for this circuit change. In mice, we used retrograde labeling, brain slice recordings, and optogenetics to selectively stimulate and record ascending BLA inputs onto PL neurons that send projections to the periaqueductal gray (PAG), which is a midbrain structure that plays a significant role in endogenous analgesia. Activating BLA projections evoked both excitatory and inhibitory currents in cortico-PAG (CP) neurons, as we have shown previously. We measured changes to the ratio of BLA-evoked excitatory to inhibitory currents in the spared nerve injury (SNI) model of neuropathic pain. Our analysis reveals a reduced excitation-inhibition (E/I) ratio of BLA inputs to PL-CP neurons 7 days after SNI. The E/I ratio of BLA inputs to CP neurons in neighboring infralimbic (IL) cortex was unchanged in SNI animals. Collectively, this study reveals that the overall E/I balance of BLA inputs to PL neurons projecting to the PAG is reduced in a robust neuropathic pain model. Overall, our findings provide new mechanistic insight into how nerve injury produces dysfunction in PL circuits connected to structures involved in pain modulation.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Substância Cinzenta Periaquedutal/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Células Piramidais/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiopatologia
9.
Front Mol Neurosci ; 13: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508590

RESUMO

The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiological determinants of corticospinal motor neuron (CSMN, a.k.a UMN in mice) vulnerability, we investigated the motor cortex of hSOD1G93A mice at P30 (postnatal day 30), a presymptomatic time point. Glutamate uncaging by laser scanning photostimulation (LSPS) revealed altered dynamics especially within the inhibitory circuitry and more specifically in L2/3 of the motor cortex, whereas the excitatory microcircuits were unchanged. Observed microcircuitry changes were specific to CSMN in the motor column. Electrophysiological evaluation of the intrinsic properties in response to the microcircuit changes, as well as the exon microarray expression profiles of CSMN isolated from hSOD1G93A and healthy mice at P30, revealed the presence of a very dynamic set of events, ultimately directed to establish, maintain and retain the balance at this early stage. Also, the expression profile of key voltage-gated potassium and sodium channel subunits as well as of the inhibitory GABA receptor subunits and modulatory proteins began to suggest the challenges CSMN face at this early age. Since neurodegeneration is initiated when neurons can no longer maintain balance, the complex cellular events that occur at this critical time point help reveal how CSMN try to cope with the challenges of disease manifestation. This information is critically important for the proper modulation of UMNs and for developing effective treatment strategies.

10.
Cell Rep ; 31(10): 107729, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521254

RESUMO

The medial prefrontal cortex (mPFC) modulates a range of behaviors, including responses to noxious stimuli. While various pain modalities alter mPFC function, our understanding of changes to specific cell types underlying pain-induced mPFC dysfunction remains incomplete. Proper activity of cortical GABAergic interneurons is essential for normal circuit function. We find that nerve injury increases excitability of layer 5 parvalbumin-expressing neurons in the prelimbic (PL) region of the mPFC from male, but not female, mice. Conversely, nerve injury dampens excitability in somatostatin-expressing neurons in layer 2/3 of the PL region; however, effects are differential between males and females. Nerve injury slightly increases the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) in layer 5 parvalbumin-expressing neurons in males but reduces frequency of sEPSCs in layer 2/3 somatostatin-expressing neurons in females. Our findings provide key insight into how nerve injury drives maladaptive and sex-specific alterations to GABAergic circuits in cortical regions implicated in chronic pain.


Assuntos
Neuralgia/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Neuralgia/metabolismo , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Córtex Pré-Frontal/metabolismo , Fatores Sexuais
11.
Pain ; 161(1): 166-176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479066

RESUMO

Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.


Assuntos
Núcleo Central da Amígdala/fisiopatologia , Neuralgia/fisiopatologia , Neurônios/fisiologia , Núcleos Parabraquiais/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Núcleo Central da Amígdala/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Neuralgia/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Técnicas de Patch-Clamp , Traumatismos dos Nervos Periféricos/metabolismo , Somatostatina/metabolismo
12.
Nutr Diabetes ; 9(1): 29, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611548

RESUMO

BACKGROUND: Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism. METHODS: In order to test this hypothesis, we generated POMC neuron-specific Gpr17 knockout (PGKO) mice and determined their energy and glucose metabolic phenotypes on normal chow diet (NCD) and high-fat diet (HFD). RESULTS: Adult PGKO mice on NCD displayed comparable body composition and metabolic features measured by indirect calorimetry. By contrast, PGKO mice on HFD demonstrated a sexually dimorphic phenotype with female PGKO mice displaying better metabolic homeostasis. Notably, female PGKO mice gained significantly less body weight and adiposity (p < 0.01), which was associated with increased energy expenditure, locomotor activity, and respiratory quotient, while males did not have an overt change in energy homeostasis. Though PGKO mice of both sexes had comparable glucose and insulin tolerance, detailed analyses of liver gene expression and serum metabolites indicate that PGKO mice could have reduced gluconeogenesis and increased lipid utilization on HFD. To elucidate the central-based mechanism(s) underlying the better-preserved energy and glucose homeostasis in PGKO mice on HFD, we examined the electrophysiological properties of POMC neurons and found Gpr17 deficiency led to increased spontaneous action potentials. Moreover, PGKO mice, especially female knockouts, had increased POMC-derived alpha-melanocyte stimulating hormone and beta-endorphin despite a comparable level of prohormone POMC in their hypothalamic extracts. CONCLUSIONS: Gpr17 deficiency in POMC neurons protects metabolic homeostasis in a sex-dependent manner during dietary and aging challenges, suggesting that Gpr17 could be an effective anti-obesity target in specific populations with poor metabolic control.


Assuntos
Peso Corporal/fisiologia , Encéfalo/metabolismo , Resistência à Insulina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Feminino , Homeostase/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais
13.
J Physiol ; 596(24): 6289-6305, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281797

RESUMO

KEY POINTS: The central nucleus of the amygdala (CeA) encompasses the main output pathways of the amygdala, a temporal lobe structure essential in affective and cognitive dimensions of pain. A major population of neurons in the CeA send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. CeA-PAG neurons are topographically organized based on their targeted subregion within the PAG. PAG-projecting neurons in the central medial (CeM) and central lateral (CeL) regions of CeA are intrinsically distinct. CeL-PAG neurons are a homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered in the complete Freund's adjuvant model of inflammatory pain. ABSTRACT: A major population of neurons in the central nucleus of amygdala (CeA) send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. While the CeA-PAG pathway has proved to be a component of descending anti-nociceptive circuitry, the functional organization of CeA-PAG neurons remains unclear. We identified CeA-PAG neurons in C57BL/6 mice of both sexes using intracranial injection of a fluorescent retrograde tracer into the PAG. In acute brain slices, we investigated the topographical and intrinsic characteristics of retrogradely labelled CeA-PAG neurons using epifluorescence and whole-cell electrophysiology. We also measured changes to CeA-PAG neurons in the complete Freund's adjuvant (CFA) model of inflammatory pain. Neurons in the central lateral (CeL) and central medial (CeM) amygdala project primarily to different regions of the PAG. CeL-PAG neurons consist of a relatively homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered 1 day after induction of the CFA inflammatory pain model. Collectively, our results provide insight into pain-induced changes to a specific population of CeA neurons that probably play a key role in the integration of noxious input with endogenous analgesia and behavioural coping response.


Assuntos
Tonsila do Cerebelo/citologia , Inflamação/fisiopatologia , Neurônios/fisiologia , Dor/fisiopatologia , Substância Cinzenta Periaquedutal/citologia , Animais , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Técnicas de Patch-Clamp , Coloração e Rotulagem
14.
J Neurosci ; 38(20): 4829-4839, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29695413

RESUMO

The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopulations of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFC in brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3 inhibitory input to CP neurons ipsilateral to CCI. These results demonstrating region and laminar specific changes to mPFC-PAG neurons suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to persistence of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a significant unresolved medical problem that is refractory to traditional analgesics and can negatively affect emotional health. The role of central circuits in mediating the persistent nature of chronic pain remains unclear. Local circuits within the medial prefrontal cortex (mPFC) process ascending pain inputs and can modulate endogenous analgesia via direct projections to the periaqueductal gray (PAG). However, the mechanisms by which chronic pain alters intracortical circuitry of mPFC-PAG neurons are unknown. Here, we report specific changes to local circuits of mPFC-PAG neurons in mice displaying chronic pain behavior after nerve injury. These findings provide evidence for a neural mechanism by which chronic pain disrupts the descending analgesic system via functional changes to cortical circuits.


Assuntos
Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Neurônios , Substância Cinzenta Periaquedutal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Mapeamento Encefálico/métodos , Ácido Glutâmico/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor , Técnicas de Patch-Clamp , Estimulação Luminosa , Neuropatia Ciática/fisiopatologia
15.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022632

RESUMO

Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Sistema Límbico/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Potenciais de Ação/efeitos dos fármacos , Adenoviridae/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Toxina da Cólera/metabolismo , Feminino , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Técnicas de Patch-Clamp
16.
Front Cell Neurosci ; 9: 161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972785

RESUMO

The infralimbic (IL) cortex is a key node in an inter-connected network involved in fear and emotion processing. The cellular and circuit-level mechanisms whereby IL neurons receive, filter, and modulate incoming signals they project onward to diverse downstream nodes in this complex network remain poorly understood. Using the mouse as our model, we applied anatomical labeling strategies, brain slice electrophysiology, and focal activation of caged glutamate via laser scanning photostimulation (glu-LSPS) for quantitative neurophysiological analysis of projectionally defined neurons in IL. Injection of retrograde tracers into the periaqueductal gray (PAG) and basolateral amygdala (BLA) was used to identify cortico-PAG (CP) and cortico-BLA (CA) neurons in IL. CP neurons were found exclusively in layer 5 (L5) of IL whereas CA neurons were detected throughout layer 2, 3, and 5 of IL. We also identified a small percentage of IL neurons that project to both the PAG and the BLA. We found that L5 CP neurons have a more extensive dendritic structure compared to L5 CA neurons. Neurophysiological recordings performed on retrogradely labeled neurons in acute brain slice showed that CP and CA neurons in IL could be broadly classified in two groups: neuronal resonators and non-resonators. Layer 2 CA neurons were the only class that was exclusively non-resonating. CP, CA, and CP/CA neurons in layers 3 and 5 of IL consisted of heterogeneous populations of resonators and non-resonators showing that projection target is not an exclusive predictor of intrinsic physiology. Circuit mapping using glu-LSPS revealed that the strength and organization of local excitatory and inhibitory inputs were stronger to CP compared to CA neurons in IL. Together, our results establish an organizational scheme linking cellular neurophysiology with microcircuit parameters of defined neuronal subclasses in IL that send descending commands to subcortical structures involved in fear behavior.

17.
Neuropharmacology ; 79: 542-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440368

RESUMO

The spatial distribution of N-methyl-d-aspartate receptor (NMDAR) subunits in layer 5 (L5) neurons of the medial prefrontal cortex (mPFC) is important for integrating input-output signals involved in cognitive functions and motor behavior. In this study, focal laser scanning photostimulation of caged glutamate, slice electrophysiology, and small peptide pharmacology, were used to map the distribution of functional GluN2A and GluN2B subunits of the NMDAR from L5 neurons of wild-type (WT) and GluN2A(-/-) mice. Focal uncaging of glutamate evoked spatially-restricted glutamatergic responses on various dendritic locations of pyramidal neurons in the mPFC. Analyses of the spatial arrangements of the GluN2A and GluN2B subunits were performed by comparing inhibition of glutamatergic responses in the presence of the GluN2A-selective pharmacological antagonist, NVP-AAM077 (NVP), and the GluN2B-selective peptidic antagonist, conantokin-G (con-G). We found that apical and basal expression and distribution of GluN2A and GluN2B were similar in L5 mPFC neurons of WT mice. However, the inhibition of glutamatergic responses by NVP in brain slices of GluN2A(-/-) mice were dramatically decreased, while con-G inhibition remained similar to that observed in WT brain slices. The data obtained show that expression and spatial arrangement of GluN2B subunits is independent of GluN2A in L5 neurons of the mPFC. These findings have important ramifications for NMDAR organization and function in L5 pyramidal neurons of the mPFC, and show that specific populations of NMDARs can be antagonized, while sparing other subgroups of NMDARs, thus preserving selective NMDAR functions, an important therapeutic advantage.


Assuntos
Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Conotoxinas/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Imagem Óptica , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética
18.
J Neurosci ; 33(18): 7890-904, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637180

RESUMO

Understanding mechanisms that lead to selective motor neuron degeneration requires visualization and cellular identification of vulnerable neurons. Here we report generation and characterization of UCHL1-eGFP and hSOD1(G93A)-UeGFP mice, novel reporter lines for cortical and spinal motor neurons. Corticospinal motor neurons (CSMN) and a subset of spinal motor neurons (SMN) are genetically labeled in UCHL1-eGFP mice, which express eGFP under the UCHL1 promoter. eGFP expression is stable and continues through P800 in vivo. Retrograde labeling, molecular marker expression, electrophysiological analysis, and cortical circuit mapping confirmed CSMN identity of eGFP(+) neurons in the motor cortex. Anatomy, molecular marker expression, and electrophysiological analysis revealed that the eGFP expression is restricted to a subset of small-size SMN that are slow-twitch α and γ motor neurons. Crossbreeding of UCHL1-eGFP and hSOD1(G93A) lines generated hSOD1(G93A)-UeGFP mice, which displayed the disease phenotype observed in a hSOD1(G93A) mouse model of ALS. eGFP(+) SMN showed resistance to degeneration in hSOD1(G93A)-UeGFP mice, and their slow-twitch α and γ motor neuron identity was confirmed. In contrast, eGFP(+) neurons in the motor cortex of hSOD1(G93A)-UeGFP mice recapitulated previously reported progressive CSMN loss and apical dendrite degeneration. Our findings using these two novel reporter lines revealed accumulation of autophagosomes along the apical dendrites of vulnerable CSMN at P60, early symptomatic stage, suggesting autophagy as a potential intrinsic mechanism for CSMN apical dendrite degeneration.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Fluorescência Verde/metabolismo , Neurônios Motores/patologia , Medula Espinal/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Lasers , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/patologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Superóxido Dismutase/genética , Fatores de Transcrição/genética , Ubiquitina Tiolesterase
19.
Neurobiol Dis ; 46(1): 109-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22249110

RESUMO

Glutamate-induced delayed calcium dysregulation (DCD) is a causal factor leading to neuronal death. The mechanism of DCD is not clear but Ca2+ influx via N-methyl-d-aspartate receptors (NMDAR) and/or the reverse plasmalemmal Na+/Ca2+ exchanger (NCXrev) could be involved in DCD. However, the extent to which NMDAR and NCX(rev) contribute to glutamate-induced DCD is uncertain. Here, we show that both NMDAR and NCX(rev) are critical for DCD in neurons exposed to excitotoxic glutamate. In rat cultured hippocampal neurons, 25 µM glutamate produced DCD accompanied by sustained increase in cytosolic Na+ ([Na+]c) and plasma membrane depolarization. MK801 and memantine, noncompetitive NMDAR inhibitors, added shortly after glutamate, completely prevented DCD whereas AP-5, a competitive NMDAR inhibitor, failed to protect against DCD. None of the tested inhibitors lowered elevated [Na+]c or restored plasma membrane potential. In the experiments with NCX reversal by gramicidin, MK801 and memantine robustly inhibited NCXrev while AP-5 was much less efficacious. In electrophysiological patch-clamp experiments MK801 and memantine inhibited NCXrev-mediated ion currents whereas AP-5 failed. Thus, MK801 and memantine, in addition to NMDAR, inhibited NCXrev. Inhibition of NCXrev either with KB-R7943, or by collapsing Na+ gradient across the plasma membrane, or by inhibiting Na+/H+ exchanger with 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and thus preventing the increase in [Na+]c failed to preclude DCD. However, NCXrev inhibition combined with NMDAR blockade by AP-5 completely prevented DCD. Overall, our data suggest that both NMDAR and NCXrev are essential for DCD in glutamate-exposed neurons and inhibition of individual mechanism is not sufficient to prevent calcium dysregulation.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/fisiologia , Animais , Ácido Glutâmico/toxicidade , Hipocampo/citologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cultura Primária de Células , Ratos
20.
J Neurophysiol ; 106(5): 2216-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795621

RESUMO

Motor cortex is a key brain center involved in motor control in rodents and other mammals, but specific intracortical mechanisms at the microcircuit level are largely unknown. Neuronal expression of hyperpolarization-activated current (I(h)) is cell class specific throughout the nervous system, but in neocortex, where pyramidal neurons are classified in various ways, a systematic pattern of expression has not been identified. We tested whether I(h) is differentially expressed among projection classes of pyramidal neurons in mouse motor cortex. I(h) expression was high in corticospinal neurons and low in corticostriatal and corticocortical neurons, a pattern mirrored by mRNA levels for HCN1 and Trip8b subunits. Optical mapping experiments showed that I(h) attenuated glutamatergic responses evoked across the apical and basal dendritic arbors of corticospinal but not corticostriatal neurons. Due to I(h), corticospinal neurons resonated, with a broad peak at ∼4 Hz, and were selectively modulated by α-adrenergic stimulation. I(h) reduced the summation of short trains of artificial excitatory postsynaptic potentials (EPSPs) injected at the soma, and similar effects were observed for short trains of actual EPSPs evoked from layer 2/3 neurons. I(h) narrowed the coincidence detection window for EPSPs arriving from separate layer 2/3 inputs, indicating that the dampening effect of I(h) extended to spatially disperse inputs. To test the role of corticospinal I(h) in transforming EPSPs into action potentials, we transfected layer 2/3 pyramidal neurons with channelrhodopsin-2 and used rapid photostimulation across multiple sites to synaptically drive spiking activity in postsynaptic neurons. Blocking I(h) increased layer 2/3-driven spiking in corticospinal but not corticostriatal neurons. Our results imply that I(h)-dependent synaptic integration in corticospinal neurons constitutes an intracortical control mechanism, regulating the efficacy with which local activity in motor cortex is transferred to downstream circuits in the spinal cord. We speculate that modulation of I(h) in corticospinal neurons could provide a microcircuit-level mechanism involved in translating action planning into action execution.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Vias Eferentes/fisiologia , Proteínas de Membrana/fisiologia , Córtex Motor/fisiologia , Canais de Potássio/fisiologia , Tratos Piramidais/fisiologia , Potenciais de Ação/fisiologia , Agonistas Adrenérgicos/farmacologia , Animais , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dendritos/fisiologia , Vias Eferentes/citologia , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Ácido Glutâmico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Técnicas de Cultura de Órgãos , Canais de Potássio/genética , Células Piramidais/fisiologia , Tratos Piramidais/citologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA